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ABSTRACT Here, we report the draft genomes of two Microcystis aeruginosa strains,
i.e., M. aeruginosa BLCC-F108, which was isolated from a toxic bloom in eutrophic
waters in Lake Okeechobee (Florida, USA), and M. aeruginosa BLCC-F158, which was
isolated from mesotrophic waters in Lake Tohopekaliga (Florida, USA). Genomic anal-
yses show disparate toxin potentials for these two strains.

Microcystis aeruginosa (Kützing) Kützing is a cosmopolitan, freshwater, bloom-
forming cyanobacterium that is notorious for its role in cyanobacterial harmful

algal blooms (cyanoHABs). The occurrence of cyanoHABs can cause discoloration of the
water and surface scums and is driven primarily by increases in nutrients (e.g., nitrogen
and phosphorus) from point and nonpoint sources and internal cycling (1). Microcystis
aeruginosa is also capable of producing toxic bioactive compounds that can be
concentrated in water, sediments, animals, and plants, representing both environmen-
tal and public health threats (1). Because cyanoHABs are increasing in frequency,
intensity, and duration globally (2), it is essential to understand their genomic diversity.

Microcystis aeruginosa BLCC-F108 was isolated from a subsurface grab sample from
a toxic bloom in Lake Okeechobee, Florida, in April 2019, and M. aeruginosa BLCC-F158
was isolated from a subsurface grab sample from Lake Tohopekaliga, Florida, in January
2020. For isolations, samples were spread onto BG11 agar plates (3) and grown under
a 12:12 light/dark cycle. Individual colonies were picked, grown in liquid BG11 medium,
and visually checked by light microscopy for contamination to ensure unicyanobacte-
rial cultures. Because it is difficult to achieve axenic cyanobacterial cultures and
heterotrophic bacteria are well-known inhabitants of the Microcystis mucilaginous
sheath (4), only unicyanobacterial cultures were achieved. An enzyme-linked immu-
nosorbent assay (ELISA) kit (Eurofins Abraxis, Warminster, PA, USA) was used, following
the manufacturer’s protocols, to evaluate microcystin production for the two strains. M.
aeruginosa BLCC-F108 was confirmed to be a microcystin producer, while M. aeruginosa
BLCC-F158 did not produce microcystins.

DNA was extracted using a DNeasy plant minikit (Qiagen, Germantown, MD, USA).
For genome sequencing, libraries were prepared using the Illumina TruSeq library
construction kit, and 2 � 150-nucleotide paired-end reads were generated with an
Illumina HiSeq instrument. Default parameters were used for all software unless oth-
erwise noted. Trimming was performed using fastp v0.20.1 (5), and quality was checked
using FastQC v0.11.9 (6). Raw reads were de novo assembled using SPAdes v3.14.1 (7)
with meta parameters. Contigs were then binned using MaxBin2 v2.2.4 (8), the bin
corresponding to cyanobacteria was extracted, and the completeness and contamina-
tion were assessed using CheckM v1.0.18 (9) before annotation with the Prokaryotic
Genome Annotation Pipeline (PGAP) v4.12 (10). The presence of secondary metabolite
biosynthetic gene clusters (BCGs) was assessed using antiSMASH v5.1.2 (11). The draft
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genome size of M. aeruginosa BLCC-F108 is 5,037,850 bp, and the draft genome size of
M. aeruginosa BLCC-F158 is 5,168,077 bp. Complete results can be found in Table 1.

Several BCGs were identified on the basis of identity to known BCGs within the
antiSMASH database. M. aeruginosa BLCC-F108 was found to have a 100% match to a
microcystin gene cluster, a 91% match to a piricyclamide gene cluster, a 100% match
to a micropeptin K139 gene cluster, and a 78% match to an aeruginosin 98-A gene
cluster. M. aeruginosa BLCC-F158 was found to have a 100% match to toxic compound
anabaenopeptin, micropeptin K139, and microviridin J gene clusters, as well as an 80%
match to a microviridin B gene cluster.

Data availability. The whole-genome shotgun projects for Microcystis aeruginosa
BLCC-F108 and M. aeruginosa BLCC-F158 have been deposited in DDBJ/ENA/GenBank
under the accession numbers JACEGB000000000 and JACEGC000000000, respectively.
The versions described in this paper are the first versions, JACEGB010000000 and
JACEGC010000000, respectively. The GenBank BioProject, BioSample, and SRA acces-
sion numbers for M. aeruginosa BLCC-F108 are PRJNA647122, SAMN15575897, and
SRR12598970, respectively, and those for M. aeruginosa BLCC-F158 are PRJNA647120,
SAMN15576007, and SRR12599144, respectively.
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